深蓝 人工智能 深蓝图卷积神经网络
深蓝 人工智能 深蓝图卷积神经网络 1

课程介绍(A001047):

深蓝 人工智能 深蓝图卷积神经网络

文件目录:

深蓝 人工智能 深蓝图卷积神经网络
│   ├─
│   ├─图卷积神经网络开课仪式.pptx     362.72KB
│   ├─图神经网络(GNN)100篇论文集
│   │   ├─Applications
│   │   │   ├─combinatorial optimization
│   │   │   │   ├─Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search(1).pdf     718.71KB
│   │   │   │   └─Learning Combinatorial Optimization Algorithms over Graphs.pdf     3.09MB
│   │   │   ├─graph generation
│   │   │   │   ├─Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.pdf     701.09KB
│   │   │   │   ├─MolGAN- An implicit generative model for small molecular graphs(1).pdf     1.27MB
│   │   │   │   └─NetGAN- Generating Graphs via Random Walks(1).pdf     1.8MB
│   │   │   ├─image
│   │   │   │   ├─Image classification
│   │   │   │   │   └─Few-Shot Learning with Graph Neural Networks.pdf     1.86MB
│   │   │   │   ├─Interaction Detection
│   │   │   │   │   └─Structural-RNN- Deep Learning on Spatio-Temporal Graphs.pdf     1.27MB
│   │   │   │   ├─Object Detection
│   │   │   │   │   ├─Learning Region features for Object Detection.pdf     1.86MB
│   │   │   │   │   └─Relation Networks for Object Detection.pdf     1.06MB
│   │   │   │   ├─Region Classification
│   │   │   │   │   └─Iterative Visual Reasoning Beyond Convolutions..pdf     4.08MB
│   │   │   │   ├─Semantic Segmentation
│   │   │   │   │   ├─3D Graph Neural Networks for RGBD Semantic Segmentation.pdf     2.4MB
│   │   │   │   │   ├─Dynamic Graph CNN for Learning on Point Clouds.pdf     5.25MB
│   │   │   │   │   ├─Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs.pdf     5MB
│   │   │   │   │   ├─Modeling polypharmacy side effects with graph convolutional networks.pdf     4.28MB
│   │   │   │   │   └─PointNet- Deep Learning on Point Sets for 3D Classification and Segmentation.pdf     8.84MB
│   │   │   │   ├─Social Relationship Understanding
│   │   │   │   └─Visual Question Answering
│   │   │   │         ├─Graph-Structured Representations for Visual Question Answering.pdf     3.92MB
│   │   │   │         └─Out of the Box- Reasoning with Graph Convolution Nets for Factual Visual Question Answering(1).pdf     2.62MB
│   │   │   ├─knowledge graph
│   │   │   │   ├─Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks.pdf     610.44KB
│   │   │   │   ├─Deep Reasoning with Knowledge Graph for Social Relationship Understanding.pdf     2.93MB
│   │   │   │   ├─Dynamic Graph Generation Network- Generating Relational Knowledge from Diagrams.pdf     1.37MB
│   │   │   │   ├─Knowledge Transfer for Out-of-Knowledge-Base Entities – A Graph Neural Network Approach.pdf     531.96KB
│   │   │   │   ├─Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering.pdf     618.29KB
│   │   │   │   ├─Multi-Label Zero-Shot Learning with Structured Knowledge Graphs.pdf     1.54MB
│   │   │   │   ├─Representation learning for visual-relational knowledge graphs.pdf     7.08MB
│   │   │   │   ├─The More You Know- Using Knowledge Graphs for Image Classification.pdf     2.48MB
│   │   │   │   └─Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs.pdf     1.8MB
│   │   │   ├─science
│   │   │   │   ├─A Compositional Object-Based Approach to Learning Physical Dynamics.pdf     4.44MB
│   │   │   │   ├─A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks.pdf     517.84KB
│   │   │   │   ├─A simple neural network module for relational reasoning.pdf     1.55MB
│   │   │   │   ├─Action Schema Networks- Generalised Policies with Deep Learning.pdf     1.84MB
│   │   │   │   ├─Adversarial Attack on Graph Structured Data.pdf     770.47KB
│   │   │   │   ├─Attend, Infer, Repeat- Fast Scene Understanding with Generative Models.pdf     1.48MB
│   │   │   │   ├─Attention, Learn to Solve Routing Problems!.pdf     1.67MB
│   │   │   │   ├─Beyond Categories- The Visual Memex Model for Reasoning About Object Relationships.pdf     797.68KB
│   │   │   │   ├─Combining Neural Networks with Personalized PageRank for Classification on Graphs.pdf     666.15KB
│   │   │   │   ├─Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders.pdf     744.82KB
│   │   │   │   ├─Constructing Narrative Event Evolutionary Graph for Script Event Prediction.pdf     829KB
│   │   │   │   ├─Conversation Modeling on Reddit using a Graph-Structured LSTM.pdf     867.19KB
│   │   │   │   ├─Convolutional networks on graphs for learning molecular fingerprints.pdf     964.62KB
│   │   │   │   ├─Cross-Sentence N-ary Relation Extraction with Graph LSTMs.pdf     723.8KB
│   │   │   │   ├─Deep Graph Infomax.pdf     8.33MB
│   │   │   │   ├─DeepInf- Modeling influence locality in large social networks.pdf     1.24MB
│   │   │   │   ├─Discovering objects and their relations from entangled scene representations.pdf     5.17MB
│   │   │   │   ├─Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs.pdf     746.41KB
│   │   │   │   ├─Effective Approaches to Attention-based Neural Machine Translation.pdf     428.27KB
│   │   │   │   ├─Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks.pdf     7.16MB
│   │   │   │   ├─Graph Convolutional Matrix Completion.pdf     907.15KB
│   │   │   │   ├─Graph Convolutional Neural Networks for Web-Scale Recommender Systems.pdf     10.01MB
│   │   │   │   ├─Graph networks as learnable physics engines for inference and control.pdf     2.9MB
│   │   │   │   ├─GraphRNN- Generating Realistic Graphs with Deep Auto-regressive Models.pdf     2.61MB
│   │   │   │   ├─Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification.pdf     2.69MB
│   │   │   │   ├─Hyperbolic Attention Networks.pdf     3.26MB
│   │   │   │   ├─Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.pdf     489.27KB
│   │   │   │   ├─Inference in Probabilistic Graphical Models by Graph Neural Networks.pdf     3.24MB
│   │   │   │   ├─Interaction Networks for Learning about Objects, Relations and Physics.pdf     2.08MB
│   │   │   │   ├─Learning a SAT Solver from Single-Bit Supervision.pdf     2.07MB
│   │   │   │   ├─Learning Conditioned Graph Structures for Interpretable Visual Question Answering.pdf     8.66MB
│   │   │   │   ├─Learning Deep Generative Models of Graphs.pdf     2.45MB
│   │   │   │   ├─Learning Graphical State Transitions.pdf     1.66MB
│   │   │   │   ├─Learning Human-Object Interactions by Graph Parsing Neural Networks.pdf     4.08MB
│   │   │   │   ├─Learning model-based planning from scratch.pdf     1.46MB
│   │   │   │   ├─Learning Multiagent Communication with Backpropagation.pdf     4.18MB
│   │   │   │   ├─Learning to Represent Programs with Graphs.pdf     607.09KB
│   │   │   │   ├─Metacontrol for Adaptive Imagination-Based Optimization.pdf     1.79MB
│   │   │   │   ├─Molecular Graph Convolutions- Moving Beyond Fingerprints.pdf     2.28MB
│   │   │   │   ├─NerveNet Learning Structured Policy with Graph Neural Networks.pdf     3.31MB
│   │   │   │   ├─Neural Combinatorial Optimization with Reinforcement Learning.pdf     582.63KB
│   │   │   │   ├─Neural Module Networks.pdf     1.21MB
│   │   │   │   ├─Neural Relational Inference for Interacting Systems.pdf     3MB
│   │   │   │   ├─Protein Interface Prediction using Graph Convolutional Networks.pdf     1016.82KB
│   │   │   │   ├─Relational Deep Reinforcement Learning.pdf     6.99MB
│   │   │   │   ├─Relational inductive bias for physical construction in humans and machines.pdf     1.17MB
│   │   │   │   ├─Relational neural expectation maximization- Unsupervised discovery of objects and their interactions.pdf     1.32MB
│   │   │   │   ├─Self-Attention with Relative Position Representations.pdf     404.98KB
│   │   │   │   ├─Semi-supervised User Geolocation via Graph Convolutional Networks.pdf     1.31MB
│   │   │   │   ├─Situation Recognition with Graph Neural Networks.pdf     5.45MB
│   │   │   │   ├─Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition.pdf     1.67MB
│   │   │   │   ├─Spatio-Temporal Graph Convolutional Networks- A Deep Learning Framework for Traffic Forecasting.pdf     1.05MB
│   │   │   │   ├─Structured Dialogue Policy with Graph Neural Networks.pdf     965.29KB
│   │   │   │   ├─Symbolic Graph Reasoning Meets Convolutions.pdf     3.41MB
│   │   │   │   ├─Traffic Graph Convolutional Recurrent Neural Network- A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting.pdf     1.64MB
│   │   │   │   ├─Translating Embeddings for Modeling Multi-relational Data.pdf     588.79KB
│   │   │   │   ├─Understanding Kin Relationships in a Photo.pdf     1.62MB
│   │   │   │   ├─VAIN- Attentional Multi-agent Predictive Modeling.pdf     608.35KB
│   │   │   │   └─Visual Interaction Networks- Learning a Physics Simulator from Vide.o.pdf     5.58MB
│   │   │   └─text
│   │   │         ├─A Graph-to-Sequence Model for AMR-to-Text Generation.pdf     470.98KB
│   │   │         ├─Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.pdf     789.3KB
│   │   │         ├─End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures.pdf     546.26KB
│   │   │         ├─Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks.pdf     784.41KB
│   │   │         ├─Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks..pdf     628.84KB
│   │   │         ├─Graph Convolution over Pruned Dependency Trees Improves Relation Extraction.pdf     962.87KB
│   │   │         ├─Graph Convolutional Encoders for Syntax-aware Neural Machine Translation.pdf     523.78KB
│   │   │         ├─Graph Convolutional Networks for Text Classification.pdf     2MB
│   │   │         ├─Graph Convolutional Networks with Argument-Aware Pooling for Event Detection.pdf     506.13KB
│   │   │         ├─Jointly Multiple Events Extraction via Attention-based Graph.pdf     609.6KB
│   │   │         ├─N-ary relation extraction using graph state LSTM.pdf     633.56KB
│   │   │         ├─Recurrent Relational Networks.pdf     482.13KB
│   │   │         ├─Sequence Labeling
│   │   │         └─Text classification
│   │   ├─Models
│   │   │   ├─graphtype
│   │   │   │   ├─Adaptive Graph Convolutional Neural Networks.pdf     980.99KB
│   │   │   │   ├─directed graph
│   │   │   │   │   └─Rethinking Knowledge Graph Propagation for Zero-Shot Learning.pdf     4.38MB
│   │   │   │   ├─edge-informative graph
│   │   │   │   │   ├─Graph-to-Sequence Learning using Gated Graph Neural Networks.pdf     4.23MB
│   │   │   │   │   └─Modeling relational data with graph convolutional networks.pdf     505.33KB
│   │   │   │   ├─Graph Capsule Convolutional Neural Networks.pdf     2.11MB
│   │   │   │   ├─Graph Neural Networks for Object Localization.pdf     397.84KB
│   │   │   │   ├─Graph Neural Networks for Ranking Web Pages.pdf     1.18MB
│   │   │   │   ├─Graph Partition Neural Networks for Semi-Supervised Classification.pdf     894KB
│   │   │   │   ├─heterogeneous graphs
│   │   │   │   ├─How Powerful are Graph Neural Networks-.pdf     871.25KB
│   │   │   │   ├─Mean-field theory of graph neural networks in graph partitioning.pdf     550.54KB
│   │   │   │   └─Spectral Networks and Locally Connected Networks on Graphs.pdf     2.04MB
│   │   │   ├─others
│   │   │   │   ├─A Comparison between Recursive Neural Networks and Graph Neural Networks.pdf     427.38KB
│   │   │   │   ├─A new model for learning in graph domains.pdf     356.89KB
│   │   │   │   ├─CelebrityNet- A Social Network Constructed from Large-Scale Online Celebrity Images.pdf     16.52MB
│   │   │   │   ├─Contextual Graph Markov Model- A Deep and Generative Approach to Graph Processing.pdf     750.55KB
│   │   │   │   ├─Deep Sets.pdf     5.3MB
│   │   │   │   ├─Deriving Neural Architectures from Sequence and Graph Kernels.pdf     880.73KB
│   │   │   │   ├─Diffusion-Convolutional Neural Networks.pdf     545.23KB
│   │   │   │   └─Geometric deep learning on graphs and manifolds using mixture model cnns.pdf     7.41MB
│   │   │   ├─propagationtype
│   │   │   │   ├─attention
│   │   │   │   │   ├─Attention Is All You Need.pdf     2.22MB
│   │   │   │   │   ├─Graph Attention Networks.pdf     1.66MB
│   │   │   │   │   └─Graph Classification using Structural Attention.pdf     2.64MB
│   │   │   │   ├─convolution
│   │   │   │   │   ├─Bayesian Semi-supervised Learning with Graph Gaussian Processes.pdf     872.04KB
│   │   │   │   │   ├─Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.pdf     627.75KB
│   │   │   │   │   ├─Deep Convolutional Networks on Graph-Structured Data.pdf     4.75MB
│   │   │   │   │   ├─Learning Convolutional Neural Networks for Graphs.pdf     823.63KB
│   │   │   │   │   ├─Spectral Networks and Deep Locally Connected.pdf     2.04MB
│   │   │   │   │   └─Structure-Aware Convolutional Neural Networks.pdf     1.53MB
│   │   │   │   ├─gate
│   │   │   │   │   ├─Gated Graph Sequence Neural Networks.pdf     931.94KB
│   │   │   │   │   └─Sentence-State LSTM for Text Representation.pdf     620.68KB
│   │   │   │   └─skip
│   │   │   │         ├─Representation Learning on Graphs with Jumping Knowledge Networks.pdf     3.33MB
│   │   │   │         └─Semi-Supervised Classification with Graph Convolutional Networks.pdf     1.01MB
│   │   │   └─training methods
│   │   │         ├─boosting
│   │   │         │   └─Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning.pdf     2.14MB
│   │   │         ├─Covariant Compositional Networks For Learning Graphs.pdf     669.84KB
│   │   │         ├─Graphical-Based Learning Environments for Pattern Recognition.pdf     521.43KB
│   │   │         ├─Hierarchical Graph Representation Learning with Differentiable Pooling.pdf     2.49MB
│   │   │         ├─Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction.pdf     1.15MB
│   │   │         ├─Learning Steady-States of Iterative Algorithms over Graphs.pdf     3.27MB
│   │   │         ├─neighborhood sampling
│   │   │         │   ├─Adaptive Sampling Towards Fast Graph Representation Learning.pdf     760.23KB
│   │   │         │   ├─FastGCN- Fast Learning with Graph Convolutional Networks via Importance Sampling.pdf     544.03KB
│   │   │         │   └─Inductive Representation Learning on Large Graphs.pdf     1.22MB
│   │   │         ├─Neural networks for relational learning- an experimental comparison.pdf     1.36MB
│   │   │         └─receptive field control
│   │   │               └─Stochastic Training of Graph Convolutional Networks with Variance Reduction.pdf     1.44MB
│   │   └─Survey
│   │         ├─一般推荐
│   │         │   ├─A Comprehensive Survey on Graph Neural Networks.pdf     1.98MB
│   │         │   ├─Computational Capabilities of Graph Neural Networks(1).pdf     1.48MB
│   │         │   ├─Deep Learning on Graphs- A Survey.pdf     1.96MB
│   │         │   ├─Geometric Deep Learning- Going beyond Euclidean data.pdf     5.44MB
│   │         │   └─Neural Message Passing for Quantum Chemistry.pdf     694.46KB
│   │         └─极力推荐
│   │               ├─Graph Neural Networks:A Review of Methods and Applications.pdf     2.85MB
│   │               ├─Non-local Neural Networks.pdf     1.41MB
│   │               ├─Relational Inductive Biases, Deep Learning, and Graph Networks.pdf     9.14MB
│   │               └─The Graph Neural Network Model.pdf     1.62MB
│   ├─第1章 从欧几里得空间到非欧几里得空间
│   │   ├─Chapter1卷积神经网络-从欧式空间到非欧式空间.mp4     239.53MB
│   │   └─GCN第一节课.pdf     2.1MB
│   ├─第2章 谱域图卷积介绍
│   │   ├─第2章谱域图卷积介绍.mp4     325.09MB
│   │   └─第二节课-谱域图卷积.pdf     3.59MB
│   ├─第3章 空域图卷积介绍
│   │   ├─3.1-3.2 空域卷积.mp4     357.35MB
│   │   ├─3.1-3.2-3.3-3.4–L3空域图卷积介绍(一).pdf     2.43MB
│   │   ├─3.3-3.4 空域卷积.mp4     133.48MB
│   │   ├─3.5-3.6-v5.0过平滑现象.pdf     2.66MB
│   │   ├─3.5图卷积网络回顾 空域图卷积2.mp4     164.45MB
│   │   └─3.6过平滑现象.mp4     310.82MB
│   ├─第4章 图卷积的实践应用
│   │   ├─图卷积神经网络的应用.mp4     461.09MB
│   │   └─第五节课.pdf     3.34MB
│   ├─第5章 实践:基于PyG的图卷积的节点分类(1)
│   │   ├─19:第五章作业讲评.mp4     62.08MB
│   │   ├─保存模型与相关代码.zip     4.4MB
│   │   ├─实践作业.pdf     455.01KB
│   │   ├─第1节 环境搭建
│   │   │   └─【视频】环境搭建.mp4     336.6MB
│   │   ├─第2节 基于PyG框架的节点分类实践
│   │   │   ├─16:【视频】节点分类实践(上).mp4     229.86MB
│   │   │   └─16:【视频】节点分类实践(下).mp4     200.78MB
│   │   ├─第3节 构造自己的数据集&查阅其他GCN方法
│   │   │   └─17:【视频】构造自己的数据集&查阅其他GCN方法.mp4     309.64MB
│   │   └─第4节 实践作业
│   │         ├─第六次课.pdf     304.15KB
│   │         └─节点分类code.rar     2.09KB
│   └─第6章 实践:基于Pytorch的图卷积的交通预测
│         ├─图卷积第6章优秀作业(PCCH).zip     32.78MB
│         ├─第1节 课件&代码
│         │   ├─code.rar     31.12MB
│         │   └─第七次课.pdf     420.48KB
│         ├─第2节 时序数据处理及建模
│         │   └─20:【视频】时序数据处理及建模.mp4     349.96MB
│         ├─第3节 基于Pytorch的交通流量预测
│         │   └─21:【视频】基于Pytorch的交通流量预测.mp4     427.72MB
│         └─第4节 作业
│               └─作业.pdf     441.68KB

本站所有资源均来自网络,版权归原作者所有,本站仅提供收集与推荐,若侵犯到您的权益,请【给我们反馈】,我们将在24小时内处理!

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于成为会员或者付款下载资源后没有资源信息,请及时联系站长:QQ:250303228,站长会第一时间给您补发资源。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源