本课件是高中数学竞赛专属课程,现在很多同学都想要参加竞赛来取得更好的成绩,就要多花时间来准备练习,可以下载本课件学习一下。
反函数:
(1)定义:
(2)函数存在反函数的条件:
(3)互为反函数的定义域与值域的关系:
(4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
七、常用的初等函数:
(1)一元一次函数:
(2)一元二次函数:
一般式
两点式
顶点式
二次函数求最值问题:首先要采用配方法,化为一般式,
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
等价命题在区间上有两根在区间上有两根在区间或上有一根
注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数函数:y=(a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0
(5)对数函数:
对数函数:y=(a>o,a≠1)图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0
注意:
比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
准备数学竞赛需要掌握很多内容,不光是要学会数学原理解题思路,还要多花时间练习,做到熟能生巧,在以后的考试中一定可以取得好成绩!
聚资料(juziliao.com)免责声明:
1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长!(gm@juziliao.com)
2. 分享目的仅供大家学习和交流,请不要用于商业用途!如需商用请联系原作者购买正版! 3.如有链接无法下载、失效或洽谈广告,请联系网站客服(微信:shangen0228)处理!